
Redbooks Paper

Accounting and monitoring for z/VM Linux
guest machines

Introduction
This IBM® Redpaper is intended for clients working with Linux for zSeries® under z/VM® in a
proof of concept or pilot phase. We illustrate a basic accounting and system monitoring
implementation to collect and correlate data from both z/VM and Linux.

The first part of this paper illustrates how to set up basic accounting. The second part
introduces monitoring concepts that allow clients to estimate resources required for
production. We monitor single Linux systems as well as the overall system resource usage.
Correlation of both z/VM and Linux monitoring data helps locate resource bottlenecks and
identify the cause.

This Redpaper is based on z/VM Version 4.4 and SLES Version 8 for the Linux systems.
Linux installations use the default settings.The concepts and examples in this paper can be
implemented using standard base z/VM and Linux utilities, but we provide links to licensed
z/VM and ISV products that may be used as well.

System setup
Although the examples in this Redpaper can be implemented using standard z/VM and Linux
tools, we strongly recommend considering supported, licensed products when deploying in a
production environment. We provide information about accounting and monitoring products in
“Commercial accounting products” on page 10 and “Commercial monitoring products” on
page 30.

Within z/VM, we use the IUCV *ACCOUNT and *MONITOR services (as well as the IBM
provided user DISKACNT) in conjunction with the user defined ACCSRV and MONSRV
virtual machines to process z/VM data. Routines for collecting and transforming the data are
written in REXX. z/VM data is exported via NFS and accessed by the Linux-based report
generator.

Erich Amrehn
Ronald Annuss

Arwed Tschoeke
© Copyright IBM Corp. 2004. All rights reserved. ibm.com/redbooks 1

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Within Linux, we use the sysstat utilities to continuously log system activity. The Apache
HTTP server is used to generate reports. The CGI scripts on the report system are written in
Perl. Gnuplot is used to create the graphs.

The system configuration is depicted in Figure 1.

Figure 1 System configuration

The solid (blue) lines indicate permanent connections and dataflow. The dotted (red) lines
show the dataflow initiated only for report generation.

Accounting z/VM Linux guests
Nowadays many clients are looking for ways to consolidate their distributed systems onto
zSeries using Linux and z/VM. One of the advantages of this consolidation scenario is the
ability to establish a precise accounting system. Since IT costs are always a key factor when
considering server consolidation, it is also necessary to establish a charge back method for
the consolidation platform where resources are shared between multiple users.

We show how to utilize the z/VM accounting facility to build a simple accounting system for
Linux guests running under z/VM.

z/VM accounting records
z/VM has an accounting system service to collect accounting information for guest machines.
If the accounting is enabled, CP collects resource usage information about guests and stores

VM service machines

DISKACNT
collects
account
reports

ACCSRV MONSRV

processes
account
records

collects
monitor
records

LIN162

LIN163

LIN164

LIN165

logs sysstat
data

logs sysstat
data

logs sysstat
data

logs sysstat
data

Report
Web Server

(httpd)

LIN161

191 191 191

TCPIP VMNFS

link read
only

OSA

VM IP stack
makes CMS

disks available
to Linux report

server

export srv home
disk read only

read VM data via nfs

VM virtual LAN (switch) get sysstat data
on demand via ssh

LAN/WAN
client access via http,
generate and view reports

Linux guests
*ACCOUNT *MONITOR

VM LPAR
2 Accounting and monitoring for z/VM Linux guest machines

that data in memory. Service machines connect via IUCV (*ACCOUNT) to the CP accounting
facility to retrieve accounting records. Account records are in binary format and can be
processed by programs or scripts. We give a short description of available accounting records
here. For more detailed information refer to z/VM V4R4.0 CP Planning and Administration,
SC24-6043.

z/VM 4.4 accounting records for the following types of resource usage are available:

� Virtual machine resource usage – Type 01
� Dedicated devices –Type 02
� Temporary disk space – Type 03
� Journaling – Types 04, 05, 06, 08 and 0I
� SNA/CCS- Type 07
� Inter-System Facility for Communications – Type 09
� Logging changes to a user’s privilege – Type 0A
� Virtual disk in storage space – Type 0B
� Network data transmissions – Type 0C

In this Redpaper, we use record types 01 and 0C.

Type 01 records contain CPU time information. Records of this type are created when a user
logs on, logs off, and when the CP ACNT command is issued. Figure 1 shows the type 01
record fields we use.

Table 1 Used fields from type 01 account records

Type 0C records contain guest network usage information for virtual network adapters. Type
0C records are written when the CP ACNT command is issued. Figure 2 shows the type 0C
record fields we use.

Table 2 Used fields from type 0C account records

z/VM accounting model
To understand how z/VM accounting operates, we briefly discuss accounting principles. This
discussion is based on a simple accounting model using only a subset of the available
accounting information.

Column Description

1–8 User ID

17–28 Date and time of accounting (in mmddyyhhmmss format)

29–32 Number of seconds connected to CP

33–36 Milliseconds of processor time used, including time for supervisor functions

37–40 Milliseconds of virtual CPU time used

80 Accounting record identification code

Column Description

1–8 User ID

51–58 Bytes Sent

59–66 Bytes Received

80 Accounting record identification code
 Accounting and monitoring for z/VM Linux guest machines 3

Within z/VM, all resources are shared among guests. z/VM accounting can determine how
much of a shared resource is used by a single guest in a selected time frame. This
information can be used to charge the user or organization owning the guest. Shared
resources can include:

� CPU
� Memory
� Network devices
� I/O adapters
� DASD space

In our accounting model, we consider only CPU and network usage for Linux guests. For
simplicity, we assume all other resources are static and calculate percentages for each guest.

As an example, consider z/VM running in an LPAR with the following configuration:

� Two Integrated Facility for Linux (IFL) processors
� 2 GB of memory
� 100 GB of attached Direct Access Storage Device (DASD) storage
� One shared OSA-Express GbE network adapter

A Linux guest is defined to z/VM with the following configuration:

� One virtual processor
� 512 MB of virtual storage
� 15 GB of DASD storage
� One virtual network interface connected to a guest LAN or virtual switch

Charges to the Linux guest might be calculated as follows:

� DASD charges
The 15 GB of DASD storage can be billed at a fix cost per month to the user.

� Virtual storage charges
If the sum total of virtual storage defined to all Linux guests is assumed to be 6 GB, the
user could be charged a percentage based on the virtual machine size. In the example,
this translates to of virtual storage. From the 2 GB of real memory
available to z/VM, this translates to 170 MB per month charged to the guest.

� CPU and network charges
CPU and network charges can be calculated based on actual usage as recorded by z/VM
accounting.

Although this model may be not accurate enough for production, it may be useful to estimate
resource usage for a pilot or proof of concept project. A more sophisticated accounting model
could include measured data other resource usage, including:

� Actual consumed memory
For example, these charges could be based on average value of the working set size for a
guest and paging activity data.

� The I/O channel utilization or amount of I/O data transferred

In addition, costs may be varied based on the time a resource is used (day or night).

512 MB 6 GB⁄ 8.3%=
4 Accounting and monitoring for z/VM Linux guest machines

Set up a service machine to collect account records
To collect accounting information, we use two service guest machines:

� DISKACNT
This IBM-provided example service machine continuously runs a program to retrieve and
store account records to its A-disk when the CP ACNT command is issued.

� ACCSRV
We create this service machine to process the accounting records. ACCSRV has
read-only access to the DISKACNT A-disk. ACCSRV is automatically started through
AUTOLOG and operates in disconnected mode. The service machine periodically
executes a REXX script via WAKEUP. This in turn executes the CP ACNT ALL command,
which then processes account records to extract actual Linux guest resource usage
values.

The ACCSRV user
The ACCSRV user must have class A privileges in order to issue the CP ACNT command. We
set the secondary console to the operator because ACCSRV always operates disconnected.
The A-disk must be large enough to hold accounting data: 50 cylinder in this example.
Example 1 shows the directory entry for the ACCSRV user.

Example 1 ACCSRV user directory entry

USER ACCSRV AUTOONLY 32M 32M AG
 INCLUDE IBMDFLT
 AUTOLOG AUTOLOG1 OP1 MAINT
 MACHINE XA
 LINK MAINT 493 493 RR
 LINK DISKACNT 191 192 RR
 MDISK 191 3390 0750 0050 430W01 MRV READ WRITE MULTIPLE

Account record list
Account records received by DISKACNT contain data for all z/VM guests. To process only
records for Linux users, we create a ACC LIST file. This contains a list of all guests for which
accounting records are to be saved. Other guests such as TCPIP or VMNFS can be included
as well. A sample ACC LIST file is shown in Example 2.

Example 2 ACC LIST file contents

LIN161
LIN162
LIN163
LIN164
LIN165

Note: Account records for z/VM guest LANs are created only when both:

� The guest LAN is defined with the option ACCOUNT ON.
� The NETA option is set in the user directory entry.

To ensure that the z/VM accounting is always enabled, we add the following line to the
PROFILE EXEC of the AUTOLOG1 user:

'CP RECORDING ACCOUNT ON'

Note: For security reasons, we prevent manual logon to this virtual machine by specifying
AUTOONLY as the password. This service machine is started only via AUTOLOG.
 Accounting and monitoring for z/VM Linux guest machines 5

Account record processing
Account record processing is implemented with three REXX scripts:

� PROFILE EXEC
PROFILE EXEC contains an endless loop executed nightly using the WAKEUP utility (with
the wakeup time defined in the file WAKEUP TIMES file). The CP ACNT ALL command is
issued within the loop and the A-disk DISKACNT user is re-accessed to reflect the
changed account record file contents.

� READACC EXEC
Next, the script READACC EXEC is called to process newly created account records.
Resource usage values for users listed in ACC LIST file are stored in a daily account file.

� CLEAN EXEC
Finally, the CLEAN EXEC script is called to purge old account files. The loop is then halted
via WAKEUP. This creates a daily summary file with accounting information for Linux
guests. These summary files are available to the Linux reporting system using NFS.

PROFILE EXEC
Example 3 shows the PROFILE EXEC script of our ACCSRV machine.

Example 3 PROFILE EXEC script

/* PROFILE EXEC - forever loop processes account records each night */
'CP SET RUN ON'
'CP SP CONS * START'
'ACC 493 U'

DO FOREVER
 'wakeup (file(wakeup times)'
 'REL 192'
 'ACNT ALL'
 'SLEEP 1 MIN'
 'ACC 192 D'
 'SLEEP 1 MIN'
 'READACC'
 'SLEEP 1 MIN'
 'CLEAN'
 'SLEEP 10 MIN'
END

The file WAKEUP TIMES file contains the following line:

ALL 23:55:00 01/01/01

READACC EXEC
The READACC REXX script reads and processes the newest account file from the A-disk of
the DISKACNT user. Processing proceeds by selecting accounting records for selected Linux
guests and by translating those records into human readable form. Results are stored in a file
with the current day as its extension.

The account file produced by DISKACNT contains binary records for every logged on guest
when the CP ACNT ALL command is executed. In addition, logon and logoff event records are
present. The record file can contain multiple records for each user. READACC EXEC finds
the desired records using REXX pipe commands. The major stages and flow of these pipes
are shown in Figure 2 on page 7.
6 Accounting and monitoring for z/VM Linux guest machines

Figure 2 Extraction pipe flow

An extract of the READACC script shown in Example 4 depicts the relevant pipe commands.
The complete file with comments is listed in “ACCSRV” on page 32.

Example 4 Account processing pipe commands

/* extract the records types 1 and C from account file */
'pipe (end ?) <' input,
'| a: locate 80 /1/',
'| SPECS 1-8 1 17-22 10 29-32 C2X 20 33-36 C2X 30 37-40 C2X 40',
'| stem cpu.',
'? a:',
'| locate 80 /C/',
'| SPECS 1-8 1 51-58 C2X 10 59-66 C2X 30',
'| stem net.'

. . .
/* filter out the values for a single guest from the list (list.i) */
 'pipe stem cpu.',
 '| locate 1-8 /'list.i'/',
 '| stem tmpcpu.'
 'pipe stem net.',
 '| locate 1-8 /'list.i'/',
 '| stem tmpnet.'

The values for CPU time and network transmissions are accumulated for each user. then they
are written to a file with the current date as file type (extension) such as:

ACC $A102803 A

ACCOUNT
data

Locate
Record 01

(Virtual Machine
Resource Usage)

Locate
Record 0C

(Network Data
Transmissions)

STEM CPU.
Locate Fields

starting at
1, 17, 29, 33, 37

Stages Results

Locate Fields
starting at
1, 51, 59

STEM NET.

Start

primary secondary

CPU. / NET.
Data

Locate
Linux System X STEM TMPCPU. / TMPNET.

First PIPE to extract records 01 and 0C from binary Account data

Second PIPE to extract values for single Linux system from results of first PIPE
 Accounting and monitoring for z/VM Linux guest machines 7

Each line in the log file has the format:

<UserID>_<Date>_<Connect>_<TCPU>_<VCPU>_<Bytes rec.>_<Bytes send>

Where:

UserID z/VM user ID as listed in ACC LIST

Date Date the account record was created (in MMDDYY format)

Connect Time the user logged on (in hhhh:mm:ss format)

TCPU Accumulated total CPU time (user time + hypervisor overhead)

VCPU Virtual CPU time (user time only) (in hhhh:mm:ss format)

Bytes rec Accumulated network data received (expressed as long integer)

Bytes send Accumulated network data sent (expressed as long integer)

Fields are separated by spaces.

CLEAN EXEC
The CLEAN EXEC script shown in Figure 5 is used for housekeeping purposes. Old account
files are purged. The number of retained files is defined in the variable keep.

Example 5 CLEAN EXEC script

/* CLEAN EXEC – housekeeping routine to purge old account records */

keep = 40

'PIPE (endchar ?)',
'cms listfile acc $a*',
'| sort 10.8',
'| a: take last 'keep,
'| stem dummy.',
'?',
'a: | stem old.'

do i=1 to old.0
 call lineout , 'cleaning old files 'old.i
 'erase 'old.i
end

Web page to generate reports online
Next, we explain setup of a simple Web front end to generate reports from the collected
accounting data. We configure an Apache HTTP server to act as a report server on one of the
Linux systems (LIN161).

Note: During operation, the DISKACNT user’s A-disk files rapidly fills up. In this example,
only one cylinder is allocated (enough space for approximately 20-30 days worth of
account data). If you plan to run this procedure for an extended period, you should plan to
include the DISKACNT user in the housekeeping procedure or to increase the size of its
A-disk.
8 Accounting and monitoring for z/VM Linux guest machines

Access to the accounting data
The A-disk of the ACCSRV user is exported by VMNFS. To access data from the Linux
reporting system, we permanently mount the A-disk of the ACCSRV user over NFS. The
mount point and options are specified in /etc/fstab as:

10.1.1.1:/ACCSRV,userid=monsrv,password=XXXX /mnt/accsrv nfs ro,auto 0 0

See “VMNFS” on page 32 for complete VMNFS setup instructions.

Report front end
On the Linux (LIN161) reporting server, we implement a simple HTML interface to the
accounting report using the Apache Web server. With the interface, a user may select the
guests and time frames for an accounting report. Figure 3 shows a screen shot of the HTML
front end.

Figure 3 Accounting report front end

Both HTML and text reports may be generated by the CGI report generator (using the accrep
command). The HTML file and the accrep Perl CGI script are listed in “Linux report system”
on page 36.

A sample HTML account report is shown in Figure 4 on page 10.

Important: The z/VM user ID and password must be included in the /etc/fstab file. When
the mount command is executed, these are values are displayed on the terminal. In order to
secure the user ID and password, user access to the server should be restricted to the
system administrator.
 Accounting and monitoring for z/VM Linux guest machines 9

Figure 4 HTML account report

A sample text output is shown in Example 6.

Example 6 CPU and memory usage report

Account data for system LIN161 from 11/01/03 to 11/07/03

Date Total CPU time Virtual CPU time Bytes send Bytes received

110103 0000:05:53 0000:04:29 634444 4371053
110203 0000:05:42 0000:04:18 794743 4261515
110303 0000:04:33 0000:03:10 5308 5836
110403 0000:04:34 0000:03:10 4960 5584
110503 0000:06:54 0000:05:31 822395 7045657
110603 0000:04:41 0000:03:18 62243 176833
110703 0000:02:00 0000:01:26 43941 171477

Text output can be further processed by other scripts.

Commercial accounting products
This section provides a short overview of some available commercial accounting products
that support for z/VM accounting data.

CA Unicenter VM: Account
Unicenter VM: Account is a resource accounting, reporting and capacity management system
for the VM environment that provides:

� Project accounting, software-package accounting and minidisk and Shared File System
(SFS) accounting

� Online querying
10 Accounting and monitoring for z/VM Linux guest machines

� Reporting and invoicing

� Budget control facilities

� Real-time collecting, validating, processing, and reporting on VM accounting data to allow
accurate cost allocation and recovery

� Preservation of data integrity and protection against lost accounting data

� Workload balancing through discounts and surcharges

� An audit trail for all CMS user activity, allowing long-term trend analysis

� Full-screen maintenance of the Unicenter VM: Account project, client, account number,
and rate information tables

Unicenter VM: Account continuously collects VM accounting information, performing real-time
validation and costing. Queries and reports provide up-to-the-minute information. Details can
be found at:

http://www.ca.com

CIMS Resource Accounting
CIMS consolidates a wide variety of accounting data from multiple systems. CIMS centralizes
processing of accounting data and converts this data to a common format for costing and
reporting. Output may be used for static or Web-based reporting or as a feed to existing
financial systems. The CIMS Chargeback System supports data from CIMS Data Collectors
for mainframes, UNIX®, Linux, Oracle, MS Windows®, and many other sources. Data
collectors track usage data associated with:

� Operating systems
� Databases
� E-mail systems
� Storage systems
� Networks
� Any application, system, or monitor that creates usage metering data

Details can be found at:

http://www.cimslab.com

SAS - IT Charge Management
Working in concert with SAS IT Resource Management, SAS IT Charge Management
provides an enterprise solution for tracking and managing IT costs. Utilizing the latest in
software technology — an open architecture, client-server design, portability across multiple
platforms, and a graphical user interface — IT Charge Management is flexible, powerful, easy
to use, and easy to maintain.

Use SAS IT Charge Management to:

� Allocate IT resources to particular business cost centers
� Apply different charge rates
� Employ your own billing schemes
� Supply users with a quick and easy way to audit and manage IT resource use
� Provide IT with a quick and accurate response to billing and auditing inquiries
� Offer invoice and costs reporting in multiple currencies

For reporting, SAS IT Charge Management offers AccountView, which is a facility that takes
the guesswork out of determining IT usage within your company. Your IT organization,
executive management, and end users will have access to user-defined and ready-to-run
reports. In addition, AccountView offers standard reports including charge item lists, charge
 Accounting and monitoring for z/VM Linux guest machines 11

http://www.ca.com
http://www.cimslab.com

by client (summary and detail), charge by item, charge by shift, and top 10 divisions by
charge. Details can be found at:

http://www.sas.com

Monitoring z/VM Linux guests
The concept of shared resources is central to operating in a zSeries environment. However,
when running Linux under z/VM, it can be difficult to determine how many resources are
consumed by any single guest. There are many advanced z/VM and Linux monitoring tools;
most focus on one part of the equation (either z/VM or Linux).

While a Linux guest may show high CPU utilization (for instance, using 100% of the CPU)
inside Linux, this does not imply the guest is a high CPU consumer from a z/VM point of view.
It may get only a few CPU-cycles from z/VM. To determine actual resource usage, one must
consider the actual physical resources provided to the guest by z/VM.

We show how to correlate resource usage data and how to get an “absolute” view of resource
allocation from inside a z/VM LPAR running Linux guests. The examples assume a setup with
CPUs or IFLs dedicated to the LPAR.

Overview of z/VM monitor records
As an introduction to z/VM monitoring, we include a small extract from the z/VM performance
publications. This is intended to give the reader a better understanding of the methodology
and examples used here. For more detailed information (especially on programming
interfaces), refer to z/VM V4R3.0 Performance Reporting Facility Function Level 410,
SC24-6027.

The CP Monitor facility collects system performance data that can be made available to an
external data reduction program for analysis. Statistics related to system operation or
contention for major system resources can be generated. These resources include
processors, storage, I/O devices, and the paging subsystem. You can control the amount and
nature of the data collected. In general, monitoring is performed in this order:

1. The user employs the privileged CP MONITOR command to control monitoring. This
includes the type, amount, and nature of data to be collected.

2. The monitor collects performance data and stores monitor records in a saved segment.

3. A CMS application program connects to the CP *MONITOR System Service to establish a
data link with CP.

4. The application retrieves and processed monitor records from the saved segment.

Monitor System Service (*MONITOR)
The monitor system service (*MONITOR) notifies connected virtual machines when records
are created by the z/VM monitor. The user-selected sets of statistics are collected and stored
as monitor records in a user-defined saved segment. Statistics are grouped into sets called
domains. Domains correspond to specific areas of system operation and are summarized in
Table 3 on page 13.
12 Accounting and monitoring for z/VM Linux guest machines

http://www.sas.com

Table 3 Monitor domains

Monitor data
The CP MONITOR SAMPLE and MONITOR EVENT commands control collection of system statistics.
*MONITOR provides the location of monitor records to a virtual machine. CP Monitor collects
data during CP operation and stores (“reports”) it as monitor records in the saved segment.
Two types of data are collected:

� Event data
Event data is collected and reported each time a designated system event occurs. The
data reported represents the status of the system at the time the event occurred.

� Sample data
Sample data is collected and reported at the end of each designated time interval. The
types of sample data are:

– Single-sample data
This data is collected once during the time interval (at the end of that time interval).
Some of this data represents the system status at the time the data was collected.
Other data consists of the accumulated counters, states, or elapsed times values
collected at the end of each time interval.

– High-frequency sample data
This data is collected at a higher rate than it is reported on. The data is reported along
with single-sample data. At each high-frequency sampling time, the data collected is
added to its corresponding counters. The data reported is the accumulated counts or
state values collected since the start of high-frequency sampling.

Use the CP MONITOR command to select the type of data to collect. You also can control the
time interval for single-sampling and the rate for high-frequency sampling.

Number Name Description

0 System Contains information about system-wide resource usage

1 Monitor Contains information about installation configuration
(processors, paging, storage, I/O, and so on) and on the type
of monitoring enabled

2 Scheduler Contains information about scheduler queues, the flow of
work through the scheduler, and the resource allocation
strategies used by the scheduler and the dispatcher

3 Storage Contains information about use of real, virtual, expanded, and
auxiliary storage

4 User Contains information about virtual machines (such as
scheduling status, virtual I/O and vector use, and logon and
logoff events)

5 Processor Contains data on work dispatched to a given processor as well
as other data related to processor usage

6 I/O Contains information about I/O requests, error recovery,
interrupts, and other information for real devices

7 Seek Contains information about seek operations for DASD devices

10 Application Data Contains application data copied from a virtual
machine’s storage when this storage has been
declared to CP for collecting the data generated by the
application program in that virtual machine
 Accounting and monitoring for z/VM Linux guest machines 13

As soon as at least one virtual machine connects to *MONITOR and the MONITOR START
command has been issued, a set of data (referred to as configuration data) is collected. This
data describes the configuration of the system and the monitor profile at the time monitoring
started. There are sample configuration as well as event configuration records.

While monitoring is active, new configuration data is generated each time a virtual machine
connects to *MONITOR.

Linux sysstat tools and data collection
We use the sysstat package included in the SLES 8 distribution to collect data from inside
Linux guests. The sysstat package consists of tools to collect system resource usage data
such as:

� I/O transfer rates
� Paging activity
� Process-related activities
� Interrupts and network activity
� Memory and swap space utilization
� CPU utilization
� Kernel activities
� TTY statistics

The two utilities we use are the sa1 and the sar commands.

The sa1 command
We use the cron scheduler to regularly collect data gathered by the sa1 command. No
installation is required to use the package because it is included in the default SuSE
installation. We need only adjust the cron interval used to schedule the sa1 command.

In our example, we changed the interval from the default value of ten minutes to one minute.
This introduces little or no noticeable overhead. Our cron files (/etc/cron.d/sysstat) are shown
in Example 7.

Example 7 Contents of /etc/cron.d/sysstat file

#crontab for sysstat

#activity reports every 1 minutes everyday
*/1 * * * * root /usr/lib/sa/sa1

Daily activity files in binary format are stored in the /var/log/sa directory:

-rw-r--r-- 1 root root 1520869 Sep 12 23:59 sa.2003_09_12
-rw-r--r-- 1 root root 1520869 Sep 13 23:59 sa.2003_09_13
-rw-r--r-- 1 root root 1520869 Sep 14 23:59 sa.2003_09_14
-rw-r--r-- 1 root root 622213 Sep 15 09:48 sa.2003_09_15

The sar command
The sar command processes files produced by sa1 to generate readable reports. The sar
command has various switches to select reported data; these switches and their usage are
documented in the sar man page.

Note: The sa1 command must be scheduled to run on each Linux guest to be monitored.
14 Accounting and monitoring for z/VM Linux guest machines

For our example, we use the –u switch to report CPU utilization, and the –r switch to report
memory utilization. Output is shown in Example 8.

Example 8 Output of the sar command

sar -ur
Linux 2.4.19-4suse-SMP (lin161) 11/13/03

00:00:00 CPU %user %nice %system %idle
00:01:00 all 0.05 0.00 0.18 99.77
00:02:01 all 0.03 0.00 0.03 99.93
00:03:00 all 0.03 0.00 0.03 99.93
00:04:00 all 0.02 0.00 0.05 99.93
...
00:00:00 kbmemfree kbmemused %memused kbmemshrd kbbuffers kbcached kbswpfree kbswpused %swpused
00:01:00 5256 250016 97.94 0 48096 163880 0 0 0.00
00:02:01 5256 250016 97.94 0 48096 163880 0 0 0.00
00:03:00 5256 250016 97.94 0 48096 163880 0 0 0.00
00:04:00 5252 250020 97.94 0 48096 163884 0 0 0.00

Refer to the sar man page for details on field meanings in the report.

Configure RSA authentication
Data is collected and reports generated at the central Linux server discussed in “Report front
end” on page 9. We use the remote command execution facility provided by Secure Shell
(SSH) to run the sar command on each monitored host from the LIN161 server. To automate
the process, we configure SSH to use RSA authentication so as to bypass normal user
password prompting. With RSA authentication, remote commands are authenticated using
public key exchange.

Perform the following steps to configure RSA authentication between the central reporting
system LIN161 and monitored Linux guests:

1. Enable RSA authentication for SSH on each monitored guest.
RSA authentication is enabled by default in SLES 8.

2. Generate a public/private key pair on the central reporting system.
Remote commands are run by CGI scripts executed from the Apache Web server. We
create keys for the wwwrun user by using the following command sequence on the LIN161
server:

su - wwwrun
$ pwd
$ /var/lib/wwwrun
$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/var/lib/wwwrun/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /var/lib/wwwrun/.ssh/id_rsa.
Your public key has been saved in /var/lib/wwwrun/.ssh/id_rsa.pub.
The key fingerprint is:
17:bb:76:6c:f2:0b:2e:0b:b7:b0:f8:72:25:11:d6:82 wwwrun@lin161
$ cat .ssh/id_rsa.pub
ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAq...

Keys are generated using the ssh-keygen command. A null passphrase is specified. The
public key is stored in the /var/lib/wwwrun/.ssh/id_rsa.pub file.
 Accounting and monitoring for z/VM Linux guest machines 15

3. Create a Linux user on each monitored host.
We name the user saruser.

4. Copy the LIN161 public key to each monitored host.
Append the /var/lib/wwwrun/.ssh/id_rsa.pub file from LIN161 to the
/home/saruser/.ssh/authorized_keys file on each monitored host.

5. Log in to each monitored host from the central reporting system.
Add the LIN161 system to the list of known hosts for user wwwrun:

S ssh -f saruser@lin162 ls
The authenticity of host 'lin162 (9.152.123.162)' can't be established.
RSA key fingerprint is d3:82:77:c0:dc:c5:8f:06:0f:1d:68:42:fc:b8:1c:b6.
Are you sure you want to continue connecting (yes/no)? yes

The sar command can now be remotely executed from the central reporting server using:

$ ssh -f saruser\@lin162 sar -ur -f /var/log/sa/sa.2003_09_23

Within the CGI script, file names are constructed from Perl variables.

Configure service machine to collect monitor records
To continuously collect z/VM resource usage data, we create a service guest machine named
MONSRV. MONSRV is started automatically from AUTOLOG and operates in disconnected
mode. A REXX script loads the standard monitor saved segment MONDCSS and connects
MONSRV to the CP *MONITOR service. The script calculates CPU usage values and logs to
a daily file. Log files are accessible to the central Linux reporting system using NFS.

The MONSRV user
The user MONSRV must have privilege class A or E to process monitor data. Because
MONSRV runs disconnected, we set the secondary console to the operator. We define the
IUCV *MONITOR and the saved segment MONDCSS to MONSRV. Its A-disk is defined large
enough to hold the data (50 cylinders in our example). Example 9 shows the directory entry
for the MONSRV user.

Example 9 The MONSRV user directory entry

USER MONSRV AUTOONLY 32M 32M EG
 INCLUDE IBMDFLT
 AUTOLOG AUTOLOG1 OP1 MAINT
 MACHINE XA
 OPTION QUICKDSP
 SHARE ABSOLUTE 3%
 IUCV *MONITOR MSGLIMIT 255
 NAMESAVE MONDCSS
 MDISK 191 3390 0750 0050 430W01 MRV READ WRITE MULTIPLE

Note: The wwwrun user is the default Apache user for SuSE installations created when
Apache is installed. Its home directory is /var/lib/wwwrun.

Note: For security reasons, we prevent manual logon to this virtual machine by specifying
AUTOONLY as the password. This service machine is started only via AUTOLOG.
16 Accounting and monitoring for z/VM Linux guest machines

The monitor list
CP monitor records data for all z/VM users. We select monitor records for specific guests
using the MON LIST file. The format for each entry is:

<USERID>_<number of virtual CPUs>_<virtual memory in MB>_<IP/hostname>

Fields are space-delimited and have corresponding sizes of:

< 8 > 1 < 2 > 1 < 6 > 1 < unlimited >

The USERID and the number of virtual CPUs fields are used to calculate the CPU usage for
the guest. Virtual memory size field is used to calculate the graphics scale. The IP address
(or hostname) is used to connect to the guest over SSH.

The first record in the MON LIST file must be the SYSTEM pseudo-user description
(specifying the number of physical CPUs defined to the LPAR). SYSTEM acts as a container
for all z/VM users not listed in the file. For example, SYSTEM contains activity by users such
as OPERATOR, TCPIP, or VMNFS as well as CP overhead reported as z/VM system
services. Every VM user may be specified. A sample MON LIST file is shown in Example 10.

Example 10 Contents of the MON LIST file

SYSTEM 2
TCPIP 1
MONSRV 1
ACCSRV 1
LIN161 1 256 lin161
LIN162 2 512 lin162
LIN163 1 256 lin163
LIN164 1 256 lin164
LIN165 1 256 lin165

Monitor records and formulas
A complete listing and description for z/VM monitor records can be found on:

http://www.vm.ibm.com/pubs/ctlblk.html

For our calculations, we use sample data from the monitor record fields depicted in Table 4 on
page 18.

Note: For z/VM users, the virtual memory and the hostname fields are optional. For Linux
guests, these fields are mandatory.
 Accounting and monitoring for z/VM Linux guest machines 17

http://www.vm.ibm.com/pubs/ctlblk.html

Table 4 Monitor record fields used

Domain Record Field Description

System
0

System data
2

MRHDRTOD

Time at which this record was built, in
time-of-day (TOD) clock format: See
IBM System 370 XA Principle of
Operation for explanation of format.

SYTPRP_PFXPRBTM
Total CPU time spent in emulation
mode on this processor for all users

SYSTPRP_PFXUTIME

Total CPU time spent on this
processor that was charged to users:
It does not include any time that CP
spends on behalf of a user doing such
things as instruction simulation or
page translation. This is in CPU time,
not elapsed (or wall clock) time.

SYSTPRP_PFXTMSYS

Total CPU time spent on this
processor that has been charged to
the system instead of the user: It
includes time spent by the system on
behalf of the user doing such things as
instruction simulation. It also includes
time doing other types of system work,
such as making scheduling decisions.

User data
8

SYSTUSR_SYSUSRS
Cardinal count of current logged-on
users

User
4

User activity data

USEACT_VMDUSER User ID

USEACT_VMDTTIME

Total time that has been expended on
this VMDBK: This includes time that
the VMDBK spent doing its own work
and also time that the CP spent doing
work on behalf of the VMDBK. It is in
CPU timer format. The complement of
this field is the elapsed time in TOD
clock units.

USEACT_VMDVTIME

Total time that this user was running
and doing productive work: It does not
include any time that CP spends on
behalf of that user doing such things
as instruction simulation or page
translation. This is in CPU timer
format. The complement of this field is
the elapsed time in TOD clock units.

USEACT_VMDWSSPR

This user's projected working set size:
This is the scheduler's estimate of the
amount of storage that this user will
require to be resident as it runs during
its next stay in the dispatch list. It is
based upon the user's past behavior
and, in some cases, on the behavior of
similar types of users.
18 Accounting and monitoring for z/VM Linux guest machines

As CPU time values are cumulative counts, we calculate differences in successive monitor
record values.

Every record is time stamped with a field (MRHDRTOD) indicating when it was created. We
use only sample data records created at the same time (or at least nearly the same time). We
use the time stamp of Domain 0 Record 2 to calculate interval length for all records.

z/VM system-wide CPU utilization
The physical processor percent busy equals the total user time (all users) plus system
overhead divided by the sum of the online time for all processors as expressed by the formula
in Figure 5.

Figure 5 Calculating system CPU busy percentage

In Figure 5:

�

�

�

Per user CPU usage
To calculate the CPU usage for each guest, we use two similar formulas (extracted monitor
data from the user domain record). Figure 6 depicts the calculation used to compute total
CPU usage for a guest.

Figure 6 Calculating total user CPU busy percentage

Note: In the formulas that follow:

� last refers to values from the preceding record
� first refers to values of the current monitor record

Note: Processor time counters are based on the CPU timer (which counts backwards). To
obtain positive deltas, we subtract successive CPU time values in reverse order (the
current value is subtracted from the previous value).

system percent CPU busy

total user time system overhead+()
CPU=0

n

�

online time

CPU=0

n

�

--- 100•=

total user time SYTPRP_PXFUTIMElast SYTPRP_PXFUTIMEfirst–≡

system overhead SYTPRP_PXFTMSYSlast SYTPRP_PXFTMSYSfirst–≡
online time MRHDRTODfirst MRHDRTODlast–≡

total user percent CPU busy

total user time

CPU=0

n

�

online time

CPU=0

n

�

-- 100•=
 Accounting and monitoring for z/VM Linux guest machines 19

Figure 7 on page 20 depicts the calculation used to compute emulated user CPU usage for a
guest.

Figure 7 Calculating emulated user CPU busy percentage

In Figure 6 on page 19 and Figure 7:

�

�

�

Again, we subtract CPU time values in reverse order to obtain positive differences.

The logging procedure
The complete logging facility is implemented in three scripts:

� RUN EXEC
Executed at startup from the PROFILE EXEC, this script loads the monitor saved
segment, starts the monitor, and opens a STARMON pipe to connect to the saved
segment. It then calls the COLLECT REXX script.

� COLLECT REXX
This script runs an endless loop to extract output from the pipe. Usage data is calculated
and logged in to a daily file.

� CLEAN EXEC
This script runs daily to purge old log files.

Note: Emulated user percent CPU busy is a measure of real CPU percentage given to
Linux in the interval. CP overhead is the difference between total and emulated CPU
percent values. All values are expressed as a percentage of one physical or logical CPU.
Values up to on an n-way system are possible.

Note: Since we only use sample data, we can not calculate usage values for sub-interval
periods. Sub-interval periods occur when a user logs on or logs off. We disregard these
intervals by eliminating negative or incorrect values. To include these intervals, you must
enable and collect monitor event data and modify the logging script accordingly. For the
scope of this Redpaper, this was deemed unnecessary.

n 100%•

emulated user percent CPU busy

emulated user time

CPU=0

n

�

online time

CPU=0

n

�

--- 100•=

total user time USEACT_VMDTTIMElast USEACT_VMDTTIMEfirst–≡
emulated user time USEACT_VMDVTIMElast USEACT_VMDVTIMEfirst–≡
online time MRHDRTODfirst MRHDRTODlast–≡
20 Accounting and monitoring for z/VM Linux guest machines

RUN EXEC
This script is shown in Example 11.

Example 11 RUN EXEC script

/* EXEC to start the collection of monitor data */

n = 60 - substr(time(),7,2) /* start at a 00 sec */
'CP SLEEP 'n' SEC' /* interval */

'SEGMENT LOAD MONDCSS'
'CP MONITOR SAMPLE ENABLE SYSTEM ALL'
'CP MONITOR SAMPLE ENABLE USER ALL'
'CP MONITOR SAMPLE START'
'PIPE STARMON MONDCSS SAMPLE | COLLECT'

The sleep statement at the beginning ensures our that records have a full minute timestamp
and therefore match the timestamps of the Linux sar data.

COLLECT REXX
The COLLECT REXX script executes an endless loop to read data written by the RUN EXEC.
Variables used in the script hold values extracted from the pipe. Helper variables calculate the
differences between the last and the current monitor value and are organized in stems
(arrays) according to the number of processors and users. The formulas used are those
explained in “Monitor records and formulas” on page 17. Details can be found in the
comments provided with “MONSRV” on page 34.

The major stages and flow of the pipe we use to extract the monitor data is shown in Figure 8.

Figure 8 Extraction pipe flow

STARMON
(monitor data)

Locate
Domain 0
(System)

Locate
Record 2

(System Data)

Locate
Record 8
(User Data)

Locate
Domain 4

(User)

STEM SYTPRP.

VAR USERCNT

Locate Fields
starting at

9, 25, 33, 41

Stages Results

Locate Field
starting at

21

Locate Fields
starting at

21, 37, 45, 77
STEM USEACT.

Locate
Record 3

(User Activity)

Start

primary

secondary
 Accounting and monitoring for z/VM Linux guest machines 21

Stages select desired records and fields. The secondary output of the stages contains
unmatched data of the stage. It is either used as the input of a next stage or discarded.

At the end of each stage, data is stored in the SYTPRP and USEACT stems and the
USERCNT variable. The complete pipe command is shown in Example 12.

Example 12 The monitor pipe command

/*-- read system and user records into variables --------------------*/
 /*-- (monitor records from domain 0 rec 2 and domain 4 rec 3) -------*/
 'callpipe (end ?) *:',
 '| a: locate 5 X00',
 '| b: locate 8 X02',
 '| take first ' cpucnt,
 '| SPECS 9-16 C2X 1 25-32 C2X 21 33-40 C2X 41 41-48 C2X 61',
 '| stem sytprp.',
 '? b:',
 '| locate 8 X08',
 '| SPECS 21-24 C2D 1',
 '| var usrcnt',
 '? a:',
 '| locate 5 X04',
 '| locate 8 X03',
 '| take first ' usrcnt,
 '| SPECS 21-28 1 37-44 C2X 11 45-52 C2X 31 77-80 C2D 51',
 '| stem useact.'

Extracted data is used to calculate the CPU usage for the whole system as well as for each
individual user. Calculated values are written to a log file with the current date as file type
(extension) such as:

MON $M092503 A

Each log file line has the format:

<Time Stamp>_<System Data>_<User1 Data>_<User2 Data>…_<UserN Data>

Where:

Time Stamp Timestamp (in hh:mm:ss format)

System Data Block of space-delimited fields containing total CPU, user CPU,
system CPU, and emulated CPU times. The format of the block is:
<total>_<user>_<system>_<emulated>
This data is written only once per log line.

User Data A block of space-delimited fields containing user total CPU time,
user virtual CPU time, and projected working set size for each user
listed in the MON LIST file. The format of the block is:
<UserID>_<total>_<virtual>_<working set size>
A sample extract is shown in Figure 13.

Example 13 Sample user data log entry

16:17:00 2.50 1.88 0.61 1.29 SYSTEM 0.50 0 0 TCPIP 0.00 0.00 2478 MONSRV
0.02 0.02 233 ACCSRV 0.00 0.00 216 LIN161 0.35 0.25 36994 LIN162 0.80 0.58 16418
LIN163 0.34 0.25 36601 LIN164 0.21 0.12 36568 LIN165 0.28 0.18 36615

As stated before, the entry total CPU for the SYSTEM pseudo-user shows the difference
between the system wide total CPU usage and the sum of the total CPU usage of all listed
22 Accounting and monitoring for z/VM Linux guest machines

users. We interpret this as the combined overhead for z/VM system services such as TCPIP,
VMNFS, OPERATOR activity, etc.

CLEAN EXEC
The clean script runs daily. It utilizes a pipe to list all monitor files and sort them by oldest
date. The variable keep controls the number of files to retain, and the remainder are deleted.
The complete script is shown in Example 14.

Example 14 The CLEAN EXEC script

/* CLEAN EXEC – housekeeping routine to purge old monitor records */
keep=7

'PIPE (endchar ?)',
'cms listfile mon $m*',
'| sort 10.8',
'| a: take last 'keep,
'| stem dummy.',
'?',
'a: | stem old.'

do i=1 to old.0
 call lineout , 'cleaning old files 'old.i
 'erase 'old.i
end

Correlation of the Linux and z/VM data
With logging scripts in z/VM and Linux (the sar reports), CPU and memory usage values from
both sides are available. To determine the real application performance, one must know the
amount of resources (CPU cycles) available to the application. Because resource sharing is
central to z/VM, the CPU cycles available to a Linux guest vary according to overall system
load. Therefore, we correlate usage data reported by Linux (virtual or “from the inside view”)
to the data derived from z/VM (real or “from the outside view”).

CPU usage
For each Linux guest, z/VM must consume some CPU cycles for hypervisor work (CP
overhead). Other cycles are consumed by Linux itself. Typically, more virtual CPUs (Linux
systems) are defined than the number of installed physical processors. A Linux guest controls
only a portion of the available CPU cycles during periods of high activity. The actual CPU
percentage allocated to a Linux guest during an interval is the user virtual CPU usage from
z/VM perspective (not the percentage that Linux reports).

For example, consider a Linux guest that reports 100% CPU busy in an interval. In the same
interval, z/VM may report only 80% virtual user CPU percentage (and possibly 5% for CP
user overhead) for the guest. With dedicated IFL processors, z/VM reported values are actual
physical usage values. (Shared processors are beyond the scope of this Redpaper.)

Even though Linux is running at 100% during the interval, its virtual CPU is only running at
80% of the normal (physical) speed. Thus, jobs run longer or application response time is
accordingly longer.

Memory usage
Linux is designed to efficiently use random access memory (RAM), allocating portions for the
kernel, applications, buffers, and caches. After allocating kernel and application memory,
 Accounting and monitoring for z/VM Linux guest machines 23

Linux allocates unused memory to buffers and cache. Eventually, most available memory is
used. While this policy (buffers and cache preferred over unused memory) may be correct for
servers with dedicated memory, this has consequences when running Linux under z/VM.

In z/VM systems, the total sum of virtual memory defined for all guests typically exceeds the
available physical memory. This works because z/VM manages virtual memory, allocating
real memory pages only to active guest virtual memory pages. Inactive pages are moved to
expanded storage or paging space. With Linux guests, most or all virtual memory pages are
active because Linux allocates unused memory for buffers and cache.

This can lead to situations where memory over-commitment starts degrading overall system
performance. z/VM cannot page out memory pages for long periods (as most Linux guest
virtual memory pages are active). Instead, z/VM must steal pages from active users.
Therefore, it is best to limit the virtual memory size of a Linux guest to that required by the
kernel itself and the running applications, with a minimum size required for buffers and
caches.

To determine the optimal virtual memory size for a Linux guest, monitor memory usage by the
guest (especially the buffer and cache size). In our example, we show the projected working
set size reported by z/VM. This is the amount of memory that z/VM considers active for that
guest.

Web page to generate reports online
In this section, we explain configuration of a simple Web page to generate graphical reports
from the collected monitor data. We run an Apache HTTP server on the LIN161 Linux report
server guest introduced in “Report front end” on page 9. This Linux guest is dedicated for the
task, and user access to the server should be restricted to the system administrator. Reports
are generated on-demand (instead of periodically) for minimal monitoring overhead. We use
the gnuplot package to create the graphs.

The gnuplot package
Gnuplot is a command-driven function plotting program. It can be driven either interactively or
by a configuration file. Output can be generated either on an X-Window display or as an
image. Input can read from data files. Details on gnuplot can be found at:

http://www.gnuplot.info

We use Perl CGI scripts to generate temporary configuration files for gnuplot. Then we use
the gnuplot command to produce a graph image based on the chosen settings and data files.
The resulting image is displayed in a dynamically created HTML document.

Note: If the sum of the working sets of all guests exceeds available physical memory,
paging and/or page stealing will occur.

Note: The gnuplot is included in the SLES 8 distribution.
24 Accounting and monitoring for z/VM Linux guest machines

http://www.gnuplot.info

Example 15 shows one configuration file generated for the z/VM system total report.

Example 15 Example gnuplot configuration file

set title "VM total CPU usage (09/25/03)"
set terminal png color
set data style lines
set size 1,0.5
set xdata time
set ylabel "CPU %"
set timefmt "%H:%M:%S"
set yrange [0:300]
set xrange ["00:00":"23:59"]
set format x "%H:%M"
plot '/mnt/monsrv/mon.$m092503' using 1:2 t "%CPU total" , '/mnt/monsrv/mon.$m092503'
using 1:4 t "%CP overhead"

Access to the data
“Configure RSA authentication” on page 15 explains RSA authentication configuration
between the reporting system and monitored Linux guests. We use SSH remote execution
facility to generate sar reports on monitored Linux guests:

ssh -f saruser\@$hostname sar -ur -f /var/log/sa/sa.20$year_$month_$day

Where:

$hostname Specifies the IP address or DNS hostname of the guest specified in
the MON LIST file.

$day, $month, $year Specify values from the report front end HTML form.

To access the z/VM data, we mount the home disk of user MONSRV via NFS. See “VMNFS”
on page 32 for the VMNFS setup. The mount point and options are specified in /etc/fstab are:

10.1.1.1:/MONSRV,userid=monsrv,password=XXXX /mnt/monsrv nfs ro,auto 0 0

Report front end
The report generated from the HTML form is shown in Figure 9 on page 26. Various report
types and date/time combinations may be selected.

Important: Because the z/VM user ID and password are included in the /etc/fstab file, it is
important to secure the guest. User access to this server should be restricted to the
system administrator.
 Accounting and monitoring for z/VM Linux guest machines 25

Figure 9 Front end monitoring report

After pressing the ‘Get Report’ button, the monrep CGI script is called with the selected
values. The HTML source and monrep Perl script are listed in “MONSRV” on page 34.

z/VM system total report
The z/VM system total report in Figure 10 shows overall CPU usage for the LPAR and CP
system overhead.

Figure 10 z/VM system total report

z/VM user report
The stacked type diagram z/VM user report in Figure 11 on page 27 shows accumulated CPU
usage for all guests listed in the MON LIST file.
26 Accounting and monitoring for z/VM Linux guest machines

Figure 11 z/VM user report

CPU usage is the total user CPU usage (virtual and CP overhead) for each user. The
pseudo-user SYSTEM records all activity caused by the system or monitored users. In this
context, SYSTEM is interpreted as combined overhead for z/VM system services.

Single Linux system report
The report for a single Linux system in Figure 12 shows the correlated CPU and memory
usage reported from Linux and z/VM.

Figure 12 Single Linux system report

z/VM values represent user virtual CPU usage and projected working set size.
 Accounting and monitoring for z/VM Linux guest machines 27

System wide heavy CPU usage
To demonstrate a situation with heavy CPU usage, we ran a benchmark (PI calculation) on
some Linux guests to show virtual CPU speed declining during periods of CPU contention.
This example runs on a z/VM LPAR with two physical processors (IFLs). Five Linux guests
are defined; three run the benchmark. The three benchmark guests are defined as:

� LIN162
Defined with two logical processors, assumed to be production system 1

� LIN163
Defined with one logical processor, assumed to be production system 2

� LIN164
Defined with one logical processor, assumed to be a test system

Two benchmark runs are made on the LIN162, 163, and 164 guests; a delay between each
guest is introduced when starting the benchmark. For the first run, each guest is assigned a
relative share (weight) of 100 (the default for z/VM guests). For the second run, the LIN162
guest is assigned a relative weight of 200, and the LIN164 guests are assigned a relative
weight of 50. The z/VM user report in Figure 13 shows that the Linux guests fully utilize CPU
resources.

Figure 13 Benchmark z/VM user report

In the first benchmark run (in the interval 13:20-14:00), we note:

� During the first minute, the LIN162 guest consumes 100% of both physical processors.

� When the LIN163 guest starts, the LIN162 and LIN163 guests each consume the
equivalent of 100% of a single processor.

� When the LIN164 guest starts, z/VM allocates the equivalent of 66% of a single processor
to guest. This is expected because there are three guests with equal weight sharing two
processors.

In Figure 14 on page 29, CPU utilization is depicted as reported from the perspective of
LIN162 Linux guest. Similarly, Figure 15 on page 29 and Figure 16 on page 29 report CPU
utilization from the perspective of the LIN163 and LIN164 Linux guests.
28 Accounting and monitoring for z/VM Linux guest machines

Figure 14 Benchmark LIN162 CPU report

Figure 15 Benchmark LIN163 CPU report

Figure 16 Benchmark LIN164 CPU report

These reports illustrate that Linux always “sees” CPU usage (where n is the
amount of virtual processors defined to the system). Correlating the z/VM and Linux data, we
see a decline in the speed of the virtual processors during a period of high activity as
recorded in the %cpu (red) graph.

In Figure 14, we note the most dramatic decline in virtual CPU speed for the LIN162 (down to
66% from 200%) when CPU resources are constrained. Because LIN162 is a production

n 100%•
 Accounting and monitoring for z/VM Linux guest machines 29

system, we compensate for the loss of CPU speed by assigning a relative weight of 200 to
LIN162 and a relative weight of 50 to LIN164 before the second run. The effect is noted in
Figure 14 on page 29 in the second run. In this run, the utilization decline from 200% is
reduced to 120%.

Using these reports, you can identify periods of resource constraints and take appropriate
action (such as adjusting relative or absolute shares according to workload).

Linux memory usage
After Linux IPL, total memory usage reported by both Linux and the z/VM projected working
set size is typically much smaller than the defined virtual memory size. Eventually, Linux fills
unused free memory with cache and buffers. The z/VM working set size grows accordingly.

When all memory is used and an application requests more memory, Linux reclaims memory
from the cache and buffers. The z/VM working set size remains the same (approximately
equal to the guest virtual memory size). The best opportunity to reduce the z/VM working set
size comes from reducing the size of buffer and cache memory. This can be accomplished by
reducing the size of the guest virtual memory.

Memory usage monitor reports (such as depicted in Figure 17) can help determine how much
virtual memory size may be reduced for Linux guests. Look at memory usage over long
periods of time.

Figure 17 Single Linux system memory report

Commercial monitoring products
This section provides a short overview of some commercial monitoring products available for
z/VM and Linux.

IBM Performance Toolkit for VM
The Performance Toolkit for VM provides enhanced monitor and performance report
capabilities for z/VM systems programs, system operators, or performance analysts. Offered
as a priced optional feature of z/VM, the Performance Toolkit for VM is derived from the
FCON/ESA program (5788-LGA). Functions provided by Performance Toolkit for VM include:

� Operation of the system operator console in full-screen mode
� Management of multiple (local or remote) z/VM systems
� Processing of VM history files and VM monitor data captured by the MONWRITE utility
� Graphic performance analysis using a Web browser or PC 3270 emulator graphics
� TCP/IP performance reporting
30 Accounting and monitoring for z/VM Linux guest machines

In addition to analyzing VM performance data, the Performance Toolkit for VM processes
Linux performance data obtained from the Resource Management Facility (RMFTM) Linux
performance gatherer, rmfpms (using the rmfpms command). The rmfpms application is
available from the zSeries RMF™ Web site. The Linux performance data from RMF can be
viewed and printed similarly to the way VM data is presented. Details can be found at:

http://www.vm.ibm.com

Velocity Software ESALPS
ESALPS collects and analyzes network data, Linux servers, and your z/VM systems in a
consistent and integrated format. Data is continually collected, presented real-time,
automatically analyzed (triggering exception reporting), and stored in a single performance
database. Reports are then generated for long-term trend analysis and capacity planning
purposes. This information is accessible via your CMS terminal or Web browser.

The ESALPS feature set highlights include:

� z/VM full subsystem measurement
� Standardized reporting
� Exception monitoring and reporting

The ESALPS suite includes ESATCP to acquire network and Linux performance data;
ESAMON to display real-time network, Linux, and VM performance; ESAMAP to create
reports and detailed analysis after the fact; and ESAWEB to provide an internet graphical
interface to your users. Details are available at:

http://www.velocitysoftware.com

BMC MAINVIEW
With MAINVIEW for Linux - Servers, you can monitor specific Linux systems or you can
monitor all your Linux systems at once. If you wish, you can see an aggregate view of how all
of your Linux systems are running and then drilll down to a specific Linux system for detailed
analysis. This approach allows the Linux technician to monitor hundreds or even thousands of
Linux systems expected to run in a z/VM environment.

In addition, the MAINVIEW for Linux - Servers product offers:

� Real-time, interval, and historical displays of Linux performance and availability data
� Outside-in VM performance information
� CPU load+ MP user statistics (per processor or engine)
� VM Storage utilization statistics
� I/O device statistics (per real device)
� CP-owned device statistics (per real CP-owned)
� Detailed monitoring of system processes

The MAINVIEW for Linux - Servers interface is designed so that you can quickly identify the
systems and applications that consume the most resources. At the same time, you also have
the ability to quickly drill down to any monitored Linux system to look at specific detail. Details
can be found at:

http://www.bmc.com

Code listings
This section contains the example scripts and files that are not listed completely in previous
sections. Softcopy versions of theses files are available as described in “Additional material”
on page 42.
 Accounting and monitoring for z/VM Linux guest machines 31

http://www.vm.ibm.com
http://www.velocitysoftware.com
http://www.bmc.com

VMNFS
Example 16 shows the VMNFS relevant entries in the different TCPIP configuration files.

Example 16 PROFILE TCPIP file

AUTOLOG
 PORTMAP 0 ; PORTMAP SERVER
 VMNFS 0 ; NFS SERVER
ENDAUTOLOG

PORT
 111 TCP PORTMAP ; Portmap Server
 111 UDP PORTMAP ; Portmap Server
 2049 UDP VMNFS ; NFS Server
 2049 TCP VMNFS NOAUTOLOG ; NFS Server

Example 17 shows the entries in the SYSTEM CTCPARMS file relevant to VMNFS.

Example 17 SYSTEM CTCPARMS file

:NICK.VMNFS :ANONYMOUS.YES
 :PARMS.
:NICK.PORTMAP :PARMS.

Example 18 shows the entries in the VMNFS CONFIG file to export the ACCSRV and
MONSRV A-disks.

Example 18 VMNFS CONFIG file

EXPORT /ACCSRV ACCSRV.191,RO,LINES=NL,TRANS=YES
EXPORT /MONSRV MONSRV.191,RO,LINES=NL,TRANS=YES

ACCSRV
Example 19 contains the complete listing of the READACC EXEC script discussed in
“READACC EXEC” on page 6.

Example 19 READACC EXEC script

/*---*/
/* Name: READACC EXEC */
/* Funktion: script to produce human readable records out of VM */
/* account records */
/* collects CPU and NET usage values for users listed in */
/* file ACC LIST, writes log to daily file */
/*---*/

numeric digits 100

/*-- read list of account guests --------------------------------------*/
lstcnt = lines('ACC LIST A')
do i = 1 to lstcnt
 list.i = substr(linein('ACC LIST A'),1,8)
end
call lineout 'ACC LIST A' /* close stream */

/*-- get the latest account file --------------------------------------*/
'pipe cms listfile account * d | sort 10.8 desc | var input'
call lineout , 'processing 'input
32 Accounting and monitoring for z/VM Linux guest machines

/*-- set the output file --*/
accdata = 'ACC 'substr(input,10,8)' A'

/*-- main routine to select and process -------------------------------*/
/*-- account records 01 and 0C --*/
'pipe (end ?) <' input,
'| a: locate 80 /1/',
'| SPECS 1-8 1 17-22 10 29-32 C2X 20 33-36 C2X 30 37-40 C2X 40',
'| stem cpu.',
'? a:',
'| locate 80 /C/',
'| SPECS 1-8 1 51-58 C2X 10 59-66 C2X 30',
'| stem net.'

/*-- add up values for each guest -------------------------------------*/
do i = 1 to lstcnt
 conn = 0
 tcpu = 0
 vcpu = 0
 bsen = 0
 brec = 0

 'pipe stem cpu.',
 '| locate 1-8 /'list.i'/',
 '| stem tmpcpu.'
 'pipe stem net.',
 '| locate 1-8 /'list.i'/',
 '| stem tmpnet.'

 date = substr(tmpcpu.1,10,6)
 do j = 1 to tmpcpu.0
 conn = conn + x2d(substr(tmpcpu.j,20,8))
 tcpu = tcpu + x2d(substr(tmpcpu.j,30,8)) / 1000
 vcpu = vcpu + x2d(substr(tmpcpu.j,40,8)) / 1000
 end
 line = list.i' 'date' 'tconv(conn)' 'tconv(tcpu)' 'tconv(vcpu)
 do j = 1 to tmpnet.0
 bsen = bsen + x2d(substr(tmpnet.j,10,16))
 brec = brec + x2d(substr(tmpnet.j,30,16))
 end
 line =line' 'bsen' 'brec
 call lineout accdata, line
end
call lineout accdata/* close stream */
exit
/*-- end of main routine --*/

/*-- function to convert seconds to hhhh:mm:ss ------------------------*/
tconv: procedure
 arg s
 s = format(s,,0)
 h = s % 3600
 s = s - h * 3600
 m = s % 60
 s = s - m * 60
 hms = right(h,4,0)':'right(m,2,0)':'right(s,2,0)
return hms
 Accounting and monitoring for z/VM Linux guest machines 33

MONSRV
Example 20 contains the complete listing of the READACC EXEC script discussed in
“READACC EXEC” on page 6.

Example 20 COLLECT REXX script

/*---*/
/* Name: COLLECT REXX */
/* Funktion: script to produce human readable records out of VM */
/* monitor records */
/* collects CPU usage values for system and users listed in */
/* file MON LIST, writes log to daily file */
/*---*/

numeric digits 100

/*-- initialize some variables --*/
usrcnt = 0
lasttime='00:00:00'
day = date('U',,,'')
init = 3 /*-- first 3 loops needed for initialisation --*/

/*-- read the list of guests to be monitored --------------------------*/
addvcpu = 0
lstcnt = lines('MON LIST A')
do i = 1 to lstcnt
 list.i = linein('MON LIST A')
 user.i.numcpu = substr(list.i,10,2)
if i > 1 then do

 addvcpu = addvcpu + user.i.numcpu - 1
 end
 list.i = substr(list.i,1,8)
end
cpucnt = user.1.numcpu

/*-- initialize system fields ---*/
totcpu = 0
usercpu = 0
syscpu = 0
emucpu = 0
do i = 1 to cpucnt
 mrhdrtod_l.i = 0
 pfxprbtm_l.i = 0
 pfxutime_l.i = 0
 pfxtmsys_l.i = 0
end

/*-- initialize user fields ---*/
do i = 2 to lstcnt
 user.i.currcpu = 1
 do j = 1 to user.i.numcpu
 user.i.currcpu.j.vmdttime_l = 0
 user.i.currcpu.j.vmdvtime_l = 0
 end
end
user.1.vcpu = 0
user.1.wss = 0

/*-- the main loop to read and transform monitor records --------------*/
34 Accounting and monitoring for z/VM Linux guest machines

do forever
 /*-- read system and user records into variables sys and usr --------*/
 /*-- (monitor records from domain 0 rec 2 and domain 4 rec 3) -------*/
 'callpipe (end ?) *:',
 '! a: locate 5 X00',
 '! b: locate 8 X02',
 '! take first ' cpucnt + addvcpu,
 '! SPECS 9-16 C2X 1 25-32 C2X 21 33-40 C2X 41 41-48 C2X 61',
 '! stem sytprp.',
 '? b:',
 '! locate 8 X08',
 '! SPECS 21-24 C2D 1',
 '! var usrcnt',
 '? a:',
 '! locate 5 X04',
 '! locate 8 X03',
 '! take first ' usrcnt,
 '! SPECS 21-28 1 37-44 C2X 11 45-52 C2X 31 77-80 C2D 51',
 '! stem useact.'

 /*-- calculate the system totals and store in variable line ---------*/
 /*-- we store the last values before the new calculation to ---------*/
 /*-- get in sync with user values -----------------------------------*/
 line = lasttime' 'format(totcpu,5)' 'format(usercpu,5),
 ' 'format(syscpu,5)' 'format(emucpu,5)
 lasttime = time()
 user.1.tcpu = totcpu
 totcpu = 0
 usercpu = 0
 syscpu = 0
 emucpu = 0
 do i = 1 to cpucnt
 tod_f = x2d(substr(sytprp.i,1,16))
 prbtm_f = x2d(substr(sytprp.i,22,15))
 utime_f = x2d(substr(sytprp.i,42,15))
 tmsys_f = x2d(substr(sytprp.i,62,15))
 intv = tod_f - mrhdrtod_l.i
 prbtm = pfxprbtm_l.i - prbtm_f
 utime = pfxutime_l.i - utime_f
 tmsys = pfxtmsys_l.i - tmsys_f
 totcpu = totcpu + trunc((utime + tmsys) / intv * 100 ,2)
 usercpu = usercpu + trunc(utime / intv * 100 ,2)
 syscpu = syscpu + trunc(tmsys / intv * 100 ,2)
 emucpu = emucpu + trunc(prbtm / intv * 100 ,2)
 /*-- store last values for next difference-calculation ------------*/
 mrhdrtod_l.i = tod_f
 pfxprbtm_l.i = prbtm_f
 pfxutime_l.i = utime_f
 pfxtmsys_l.i = tmsys_f
 end

 /*-- initialize user fields ---*/
 if init > 0 then init = init - 1
 do i = 2 to lstcnt
 user.i.tcpu = 0
 user.i.vcpu = 0
 user.i.wss = 0
 do j = 1 to user.i.numcpu
 user.i.currcpu = 1
 end
 Accounting and monitoring for z/VM Linux guest machines 35

 end

 /*-- calculate user values and store in variable line ---------------*/
 do i = 1 to usrcnt
 name = substr(useact.i,1,8)
 /*-- only look for users in the list ------------------------------*/
 do j = 2 to lstcnt
 if name = list.j then do
 vmdttime_f = x2d(substr(useact.i,12,15))
 vmdvtime_f = x2d(substr(useact.i,32,15))
 k = user.j.currcpu
 user.j.currcpu = user.j.currcpu + 1
 if user.j.currcpu.k.vmdttime_l > 0 then do
 ttime = user.j.currcpu.k.vmdttime_l - vmdttime_f
 vtime = user.j.currcpu.k.vmdvtime_l - vmdvtime_f
 utotcpu = trunc(ttime / intv * 100,2)
 uvirtcpu = trunc(vtime / intv * 100,2)
 user.j.tcpu = trunc(user.j.tcpu + utotcpu,2)
 user.j.vcpu = trunc(user.j.vcpu + uvirtcpu,2)
 user.j.wss = user.j.wss + substr(useact.i,52,15)
 user.1.tcpu = user.1.tcpu - utotcpu
 end
 /*-- store last values for next calculation ------------------*/
 user.j.currcpu.k.vmdttime_l = vmdttime_f
 user.j.currcpu.k.vmdvtime_l = vmdvtime_f
 end
 end
 end
 do i = 1 to lstcnt
 line = line' 'list.i' 'user.i.tcpu' 'user.i.vcpu' 'user.i.wss
 end

 /*-- write the transformed data in daily output file (timestamped) --*/
 if init > 0 then init = init - 1
 if init = 0 then do
 call lineout 'MON $M'day' A' , line
 call lineout 'MON $M'day' A'
 if (substr(time(),1,5) = "23:50") then do
 call lineout , 'calling clean exec'
 call clean
 end
 day = date('U',,,'')
 end
end
/*-- end of forever(main) loop (exit via #cp ext) ---------------------*/

Linux report system
Example 21 contains the HTML source for the index.shtml file discussed in “Report front end”
on page 9.

Example 21 HTML front end (index.shtml)

<html>
<!-- frontend for VM accounting and monitor reports -->
<h2>Accounting</h2>
<form action="cgi-bin/accrep" method="post">
36 Accounting and monitoring for z/VM Linux guest machines

Linux System: <select name="sys" size="1">
<option selected>LIN161</option>
<option>LIN162</option>
<option>LIN163</option>
<option>LIN164</option>
<option>LIN165</option>
</select>
<input type="radio" name="type" value="html" checked> html
<input type="radio" name="type" value="text"> text

from:

Day <input name="fday" type="text" size="2" maxlength="2" value="<!--#exec cmd="date
--date '1 week ago' +%d" -->">
Month <input name="fmonth" type="text" size="2" maxlength="2" value="<!--#exec cmd="date
--date '1 week ago' +%m" -->">
Year <input name="fyear" type="text" size="2" maxlength="2" value="<!--#exec cmd="date
--date '1 week ago' +%y" -->">

to:

Day <input name="tday" type="text" size="2" maxlength="2" value="<!--#exec cmd="date
--date '1 day ago' +%d" -->">
Month <input name="tmonth" type="text" size="2" maxlength="2" value="<!--#exec cmd="date
--date '1 day ago' +%m" -->">
Year <input name="tyear" type="text" size="2" maxlength="2" value="<!--#exec cmd="date
--date '1 day ago' +%y" -->">

<input type=submit value="Get Report"></form>

<hr>

<h2>Monitoring</h2>
<form action="cgi-bin/monrep" method="post">
<input type="radio" name="type" value="vm"> VM total

<input type="radio" name="type" value="guests" checked> VM guests

<input type="radio" name="type" value="linux"> Linux system:
<select name="sys" size="1">
<option selected>LIN161</option>
<option>LIN162</option>
<option>LIN163</option>
<option>LIN164</option>
<option>LIN165</option>
</select>

Day <input name="day" type="text" size="2" maxlength="2" value="<!--#exec cmd="date +%d"
-->">
Month <input name="month" type="text" size="2" maxlength="2" value="<!--#exec cmd="date
+%m" -->">
Year <input name="year" type="text" size="2" maxlength="2" value="<!--#exec cmd="date
+%y" -->">
 from <input name="from" type="text" size="5" maxlength="5" value="00:00">
 to <input name="to" type="text" size="5" maxlength="5" value="23:59">

<input type=submit value="Get Report"></form>

</html>

Example 22 contains the complete listing of the accrep CGI script discussed in “Access to the
data” on page 25.

Example 22 Account report CGI script (accrep)
 Accounting and monitoring for z/VM Linux guest machines 37

#!/usr/bin/perl

Perl CGI script to produce VM account reports
output as HTML table or text file

use CGI;

$query = new CGI;

$fd = $query->param('fday');
$fm = $query->param('fmonth');
$fy = $query->param('fyear');
$td = $query->param('tday');
$tm = $query->param('tmonth');
$ty = $query->param('tyear');
$sys = $query->param('sys');
$type = $query->param('type');

get files for selected time frame from VM NFS mount and store
values for selected Linux system in /tmp/accdata
system("grep -h $sys /mnt/accsrv/acc.?a* | gawk
'\$2==\"$fmfdfy\",\$2==\"$tmtdty\"{print \$2,\$4,\$5,\$6,\$7}' > /tmp/accdata");

print "Content-type: text/html\n\n";

produce a HTML table out of /tmp/accdata
if ($type eq "html") {
 print "<html>\n";
 print "<h3>Account data for system $sys from $fm/$fd/$fy to $tm/$td/$ty</h3>\n";
 print "<table border=\"1\">\n";
 print "<tr><th>Date</th><th>Total CPU time</th><th>Virtual CPU time</th><th>Bytes
send</th><th>Bytes received</th></tr>\n";
 system("gawk '{printf \"<tr
align=%s><td>%s</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>\\n\",
\"\\\"right\\\"\", \$1, \$2, \$3, \$4, \$5}' /tmp/accdata");
 print "</table>\n";
 print "</html>";
}

produce a text report out of /tmp/accdata
if ($type eq "text") {
 print "<pre>\n";
 print "Account data for system $sys from $fm/$fd/$fy to $tm/$td/$ty\n\n";
 print "Date Total CPU time Virtual CPU time Bytes send Bytes
received\n\n";
 system("gawk '{printf \"%6s %17s %19s %19s %19s\\n\", \$1, \$2, \$3, \$4, \$5}'
/tmp/accdata");
 print "</pre>\n";
}

Example 23 contains the complete listing of the monrep CGI script used to generated a
monitor report.

Example 23 Monitoring report CGI script (monrep)

#!/usr/bin/perl

Perl CGI script to produce VM and Linux CPU/MEM usage graphs
the graphs are generated with gnuplot in png format
38 Accounting and monitoring for z/VM Linux guest machines

use CGI;

$query = new CGI;

$type = $query->param('type');
$sys = $query->param('sys');
$day = $query->param('day');
$month = $query->param('month');
$year = $query->param('year');
$from = $query->param('from');
$to = $query->param('to');

specify input files
$safile = "sa.20$year_$month_$day";
$monfile = "/mnt/monsrv/mon.\mmonthdayyear";

list of guests to be monitored
open(MON,"</mnt/monsrv/mon.list");
@guests = <MON>;
seek(MON,8,0);
read(MON,$cpu,2,0);
close(MON);

the config file for gnuplot
open(DEM,"> /tmp/gnuplot.dem");

report for a single Linux system
if ($type eq "linux") {
 $i = 1;
 # find the hostname/IP address
 foreach $guest (@guests) {
 ($guest,$proc,$mem,$hostname) = split(" ",$guest);
 last if ($guest eq uc($sys));
 $i++;
 }
 # get the sa log file and extract CPU and MEM usage values in temporary files
 @sar = `/usr/bin/ssh -f saruser\@$hostname sar -ur -f
/var/log/sa/sa.20$year_$month_$day`;
 @sarcpu = grep(/all/,@sar);
 pop(@sarcpu);
 open(SAR, "> /tmp/sarcpu");
 print(SAR @sarcpu);
 close(SAR);
 @sarmem = grep(!/[Lar]/,@sar);
 open(SAR, "> /tmp/sarmem");
 print(SAR @sarmem);
 close(SAR);

 # config file to plot the data from /tmp/sarcpu and /tmp/sarmem
 # and VM log file in the specified timeframe
 # Linux values are stacked type, VM values are single graphs
 print(DEM "set terminal png color\n" ,
 "set multiplot\n" ,
 "set title \"CPU usage for $sys ($month/$day/$year)\"\n" ,
 "set data style lines\n" ,
 "set size 1,0.5\n" ,
 "set origin 0.0,0.5\n" ,
 "set xdata time\n" ,
 "set ylabel \"CPU %\"\n" ,
 "set timefmt \"%H:%M:%S\"\n" ,
 Accounting and monitoring for z/VM Linux guest machines 39

 "set yrange [0:" , $proc * 100 , "]\n" ,
 "set xrange [\"$from\":\"$to\"]\n" ,
 "set format x \"%H:%M\"\n" ,
 "plot '$monfile' using 1:(\$" , 4+$i*4 , ") t \"VM %cpu\" , " ,
 "'/tmp/sarcpu' using 1:((\$3+\$4+\$5)*$proc) t \"%user\" , " ,
 "'/tmp/sarcpu' using 1:((\$4+\$5)*$proc) t \"%nice\" , " ,
 "'/tmp/sarcpu' using 1:((\$5)*$proc) t \"%system\"\n" ,
 "set title \"Memory usage for $sys ($month/$day/$year)\"\n" ,
 "set data style lines\n" ,
 "set size 1,0.5\n" ,
 "set origin 0.0,0.0\n" ,
 "set xdata time\n" ,
 "set ylabel \"Memory (MB)\"\n" ,
 "set timefmt \"%H:%M:%S\"\n" ,
 "set yrange [0:" , $mem * 1.1 , "]\n" ,
 "set xrange [\"$from\":\"$to\"]\n" ,
 "set format x \"%H:%M\"\n" ,
 "plot '$monfile' using 1:(\$" , 5+$i*4 , "*4/1024) t \"VM WSS\" , " ,
 "'/tmp/sarmem' using 1:((\$3)/1024) t \"buffers\" , " ,
 "'/tmp/sarmem' using 1:((\$3-\$6)/1024) t \"cached\" , " ,
 "'/tmp/sarmem' using 1:((\$3-\$6-\$7)/1024) t \"used by appl\"\n" ,
 "set nomultiplot");
}

z/VM system total report
if ($type eq "vm") {
 # config file to plot the system data from VM log data
 print(DEM "set title \"VM total CPU usage ($month/$day/$year)\"\n" ,
 "set terminal png color\n" ,
 "set data style lines\n" ,
 "set size 1,0.5\n" ,
 "set xdata time\n" ,
 "set ylabel \"CPU %\"\n" ,
 "set timefmt \"%H:%M:%S\"\n" ,
 "set yrange [0:", $cpu * 100 , "]\n" ,
 "set xrange [\"$from\":\"$to\"]\n" ,
 "set format x \"%H:%M\"\n" ,
 "plot '$monfile' using 1:2 t \"%CPU total\" , " ,
 "'$monfile' using 1:4 t \"%CP overhead\"\n");
}

z/VM user report
if ($type eq "guests") {
 # config file to plot guest usage values from VM log data
 # values/graphs are stacked type
 print(DEM "set title \"VM CPU usage per guest ($month/$day/$year)\"\n" ,
 "set terminal png color\n" ,
 "set data style lines\n" ,
 "set size 1,0.5\n" ,
 "set xdata time\n" ,
 "set ylabel \"CPU %\"\n" ,
 "set timefmt \"%H:%M:%S\"\n" ,
 "set yrange [0:", $cpu * 100 , "]\n" ,
 "set xrange [\"$from\":\"$to\"]\n" ,
 "set format x \"%H:%M\"\n" ,
 "plot ");
 # routine to build the stacked graphs
 @guests = reverse @guests;
 $i = scalar(@guests);
 foreach $guest (@guests) {
40 Accounting and monitoring for z/VM Linux guest machines

 ($guest,$proc) = split(" ",$guest);
 print(DEM "'$monfile' using 1:(");
 for ($j = 1; $j <= $i; $j++) {
 print(DEM "\$",3+$j*4);
 if ($j < $i) {
 print(DEM "+");
 } else {
 print(DEM ") t \"$guest\"");
 if ($i > 1) { print(DEM " , "); }
 }
 }
 $i--;
 }
}
close(DEM);

print "Content-type: image/png\n\n";

plot!
system("/usr/bin/gnuplot /tmp/gnuplot.dem");
 Accounting and monitoring for z/VM Linux guest machines 41

Additional material
This Redpaper refers to additional material that can be downloaded from the Internet, as
described below.

Locating the Web material
The Web material associated with this Redpaper is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/REDP3818/

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com/

Click Additional materials and open the directory that corresponds with the redbook form
number, REDP3818.

Obtaining the Web material
The additional Web material that accompanies this Redpaper includes the following files:

File name Description
REDP3818.zip Zipped code samples

How to use the Web material
Create a subdirectory (folder) on your workstation. Then unzip the contents of the Web
material zip file into this folder. The extracted content is organized in three directories:

� ACCSRV
This directory contains data and script files used by the ACCSRV z/VM virtual machine
described in “The ACCSRV user” on page 5. Files include:

– ACC.LIST
The ACC LIST file shown in Example 1 on page 5

– ACCSRV.DIRECT
The z/VM user directory entry shown in Example 2 on page 5

– CLEAN.EXEC
The CLEAN EXEC script shown in Example 5 on page 8

– PROFILE.EXEC
The PROFILE EXEC for ACCSRV shown in Example 3 on page 6

– READACC.EXEC
The READACC EXEC script shown in Example 19 on page 32

– WAKEUP.TIMES
The WAKEUP TIMES file described in “Account record processing” on page 6

� MONSRV
This directory contains data and script files used by the MONSRV z/VM virtual machine
described in “The MONSRV user” on page 16. Files include:

– CLEAN.EXEC
The CLEAN EXEC script shown in Example 14 on page 23
42 Accounting and monitoring for z/VM Linux guest machines

ftp://www.redbooks.ibm.com/redbooks/REDP3818/
http://www.redbooks.ibm.com/

– COLLECT.REXX
The COLLECT EXEC script shown in Example 20 on page 34

– MON.LIST
The MON LIST file shown in Example 10 on page 17

– MONSRV.DIRECT
The z/VM user directory entry shown in Example 9 on page 16

– PROFILE.EXEC
The PROFILE EXEC for MONSRV

– RUN.EXEC
The RUN EXEC script shown in Example 11 on page 21

� replinux
This directory contains data and script files used by the Linux report system guest. Files
include:

– etc/fstab
The /etc/fstab file needed to NFS-mount the ACCSRV user A-disk as discussed in
“Access to the data” on page 25

– etc/cron.d/sysstat
The /etc/cron.d/sysstat file shown in Example 7 on page 14

– srv/www/cgi-bin/accrep
The Perl accrep CGI script shown in Example 22 on page 37

– srv/www/cgi-bin/monrep
The Perl monrep CGI script shown in Example 23 on page 38

– srv/www/htdocs/index.shtml
The report HTML front end shown in Example 21 on page 36

� VMNFS
This directory contains configuration files for VMNFS. Files include:

– PROFILE.TCPIP
The PROFILE TCPIP file shown in Example 16 on page 32

– SYSTEM.DTCPARMS
The SYSTEM DTCPARMS file shown in Example 17 on page 32

– VMNFS.CONFIG
The VMNFS CONFIG file shown in Example 18 on page 32

Related publications

ITSO publications
� Linux on IBM ̂zSeries and S/390: Distributions, SG24-6264

http://www.ibm.com/redbooks/abstracts/sg246264.html

� Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions, SG24-6299

http://www.ibm.com/redbooks/abstracts/sg246299.html

� Linux on IBM ̂zSeries and S/390: Performance Measurement and Tuning,
SG24-6926

http://www.ibm.com/redbooks/abstracts/sg246926.html
 Accounting and monitoring for z/VM Linux guest machines 43

http://www.ibm.com/redbooks/abstracts/sg246264.html
http://www.ibm.com/redbooks/abstracts/sg246299.html
http://www.ibm.com/redbooks/abstracts/sg246926.html

Other resources
� z/VM 4.4 CP Planning and Administration, SC24-6043

� z/VM 4.4 CP Command and Utility Reference, SC24-608

� Linux for zSeries and S/390 Device Drivers and Installation Commands, LNUX-1303

� SuSE Linux Enterprise Server 8 for IBM S/390 and IBM zSeries - Installation

Referenced Web sites
� Computer Associates Home page

http://www.ca.com

� CIMS Lab, Inc. Home page

http://www.cimslab.com

� SAS home page

http://www.sas.com

� z/VM CMS and CP Data Areas and Control Blocks

http://www.vm.ibm.com/pubs/ctlblk.html

� Gnuplot Central

http://www.gnuplot.info

� IBM z/VM and VM.ESA Home page

http://www.vm.ibm.com

� Velocity Software, Inc. Home page

http://www.velocitysoftware.com

� BMC Software home page

http://www.bmc.com

The team that wrote this Redpaper
This Redpaper was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Erich Amrehn is a certified Senior IT Specialist at the EMEA Technical Marketing
Competence Center (TMCC), Boeblingen, Germany. Before joining the TMCC, he worked as
a project leader at the International Technical Support Organization, Poughkeepsie Center.
During that time, he wrote Redbooks™ and taught Linux topics worldwide. Before joining the
ITSO in 1998, he worked as a technical consultant to the IBM System/390® division for
e-commerce on S/390® in Europe, the Middle East, and Africa. He also has 13 years of VM
experience in various technical positions in Germany and other areas in Europe and
worldwide.

Ronald Annuss is an IT Specialist working for IBM in Germany. He holds a diploma in
Geodesy from the Technical University Berlin. He has worked with Linux for S/390 since it
became available in early 2000, and has worked on several Linux for S/390 projects with
clients in Germany. He is an Red Hat Certified Engineer (RHCE).

Arwed Tschoeke is an IBM zSeries Systems Engineer, located in Hamburg, Germany. He
worked for four years in the xSeries® presales support team specializing in Linux and MSCS.
44 Accounting and monitoring for z/VM Linux guest machines

http://www.ca.com
http://www.cimslab.com
http://www.sas.com
http://www.vm.ibm.com/pubs/ctlblk.html
http://www.gnuplot.info
http://www.vm.ibm.com
http://www.velocitysoftware.com
http://www.bmc.com

He currently focuses on zOS and cross platform solutions. He holds a degree in Physics from
the University of Kaiserslautern, Germany.

Thanks to the following people for their contributions to this project:

Stuart Swain
International Technical Support Organization, Raleigh Center

Ella Buslovich
International Technical Support Organization, Poughkeepsie Center
 Accounting and monitoring for z/VM Linux guest machines 45

46 Accounting and monitoring for z/VM Linux guest machines

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. 47

This document created or updated on May 7, 2004.

Send us your comments in one of the following ways:
� Use the online Contact us review redbook form found at:

ibm.com/redbooks
� Send your comments in an Internet note to:

redbook@us.ibm.com
� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400 U.S.A.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

IBM®
IMS™
Redbooks(logo) ™
ibm.com®

Redbooks™
RMF™
S/390®
System/390®

xSeries®
z/VM®
zSeries®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

®

48 Accounting and Monitoring for z/VM Linux guest machines

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

	Accounting and monitoring for z/VM Linux guest machines
	Introduction
	System setup
	Accounting z/VM Linux guests
	z/VM accounting records
	z/VM accounting model
	Set up a service machine to collect account records
	Web page to generate reports online
	Commercial accounting products

	Monitoring z/VM Linux guests
	Overview of z/VM monitor records
	Monitor System Service (*MONITOR)
	Linux sysstat tools and data collection
	Configure service machine to collect monitor records
	Correlation of the Linux and z/VM data
	Web page to generate reports online
	System wide heavy CPU usage
	Commercial monitoring products

	Code listings
	VMNFS
	ACCSRV
	MONSRV
	Linux report system

	Additional material
	Locating the Web material
	Obtaining the Web material
	How to use the Web material

	Related publications
	ITSO publications
	Other resources
	Referenced Web sites

	The team that wrote this Redpaper

	Notices
	Trademarks

